SCIENCE & PAST

MASTERING MATERIALS TO KNOW OUR HERITAGE

Zaragoza February 1-3 2017

Studying ancient ceramics:

from the supply of raw materials to the laboratory

Elisabetta Gliozzo

The life of a pot

RAW MATERIALS SUPPLY AND PREPARATION

- **SHAPING, COATING AND FIRING TECHNOLOGY**
- **DISTRIBUTION AND USE**
- **> POST DEPOSITIONAL PROCESSES**
- **CONSERVATION AND RESTORATION**

- Significant research objectives
 - Production site, distribution site, available reference groups, local raw materials investigated...
- Representative sampling
 - > Typology, stratigraphy, chronology, conservation state...
- Appropriate methodology
 - Destructive/ non destructive, bulk/superficial, chemical/mineralogical/....
- Rigorous presentation and interpretation of the results
- Dissemination (archaeology/archaeometry)

- Research questions
 - Raw materials supply
 - Production technology
 - (Dating)
- Sampling criteria
 - ▶ Typology, stratigraphy, chronology \rightarrow pottery -
 - ▶ Typology, stratigraphy, chronology → kiln
 - ▶ Geology → 'local' clayey and sandy materials

Elisabetta Gliozzo – Studying ancient ceramics - Science & Past (Zaragoza, February 1-3 2017)

Both wastes and finished products !!!

Analytical techniques

- Destructive
- Chemical
- Mineralogical
- Petrographic
- Geotechnical tests

Same for ceramics, kiln and raw materials !!!

Bulk chemical analyses

- 1. X-ray fluorescence (XRF)
- 2. Inductively coupled plasma mass spectroscopy (ICP-MS)
- 3. Neutron activation (NA)

"Heavy" sample Widely available Very fast The cheapest Light" sample Available ~Fast Not too expensive 3 Also non-destr. Scarcely available Fast/slow Rather expensive

PRECISION & ACCURACY

Heavy and light samples !!!

PRECISION & ACCURACY

XRF → From B to U ICP-MS → From Li to U ... no problem with light or trace elements! Lower detection limits (ppb) and higher accuracy than XRF

¹ H routine procedure after melting with borate													² He				
³ Li	Li ⁴ Be depends on sample preparation and matrix											¹⁰ Ne					
¹¹ Na	¹² Mg	¹³ AI ¹⁴ SI ¹⁵ P ¹⁶ S ¹⁷ CI										¹⁸ Ar					
¹⁹ K	20 Ca	²¹ Sc	²² Ti	²³ V	²⁴ Cr	²⁵ Mn	²⁶ Fe	27 Co	²⁸ Ni	²⁹ Cu	³⁰ Zn	³¹ Ga	Ge	³³ As	³⁴ Se	³⁵ Br	³⁶ Kr
³⁷ Rb	³⁸ Sr	³⁹ Y	⁴⁰ Zr	⁴¹ Nb	42 Mo	⁴³ Tc	44 Ru	45 Rh	⁴⁶ Pd	⁴⁷ Ag	⁴⁸ Cd	⁴⁹ In	50 Sn	51 Sb	⁵² Te	53 	⁵⁴ Xe
55 Cs	⁵⁶ Ba	57 La *	72 Hf	⁷³ Ta	⁷⁴ W	75 Re	⁷⁶ Os	77 Ir	⁷⁸ Pt	⁷⁹ Au	80 Hg	⁸¹ 1	⁸² Pb	⁸³ Bi	⁸⁴ Po	⁸⁵ At	⁸⁶ Rn
87 Fr	88 Ra	AC **															
		*	58 Ce	⁵⁹ Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Th	66 Dv	67 Ho	68 Fr	69 Tim	70 Yb	71 Lu]
		**	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	¹⁰¹ Md	102 No	103 Lr	

PRECISION & ACCURACY

Sensitivity (picograms)	Elements
1	Dy, Eu
1 - 10	In, Lu, Mn
10 - 100	Au, Ho, Ir, Re, Sm, W
100 - 10 ³	Ag, Ar, As, Br, Cl, Co, Cs, Cu, Er, Ga, Hf, I, La, Sb, Sc, Se, Ta, Tb, Th, Tm, U, V, Yb
10 ³ -10 ⁴	Al, Ba, Cd, Ce, Cr, Hg, Kr, Gd, Ge, Mo, Na, Nd, Ni, Os, Pd, Rb, Rh, Ru, Sr, Te, Zn, Zr
10 ⁴ -10 ⁵	Bi Ca K, Mg, P, Pt, Si, Sn, Ti, Tl, Xe, Y
10 ⁵ -10 ⁶	F, Fe, Nb, Ne
107	Pb, S

Mainly used for the determination of traces. Usually, it is necessary to use complementary techniques in order to determine the wt% of some elements (in particular some major elements, Pb and S).

Sample can remain radioactive for many years, requiring handling and <u>disposal protocols</u> for low-level to medium-level radioactive material.

~Sand / Clay

Case 1. Building materials - production site

Identity card

		\checkmark						\checkmark																				
	Sample	SiO ₂	TiO ₂	Al ₂ O ₃	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P2O5	LOI	v	Cr	Со	Ni	Zn	Rb	Sr	Y	Zr	Nb	Ba	La	Pb	Ce	Th	U
	THI 55	56.71	0.83	14.89	6.63	0.07	2.23	13,90	0.77	2.00	0,24	1.56	164	163	18	50	105	86	355	28	168	17	308	25	22	52	10	3
	THI 56	57,80	0.81	14.91	6.66	0.07	1.98	13.83	0.77	1.95	0.25	0.80	161	160	18	51	110	87	356	28	169	17	303	33	18	68	9	3
	THI 57	53.77	0.89	16.42	7.05	0.08	2.21	11.01	0.60	2.12	0.48	5.20	154	149	21	56	102	90	339	27	165	17	487	27	31	84	11	2
\mathbf{v}	THI 58	54.24	0.83	15.69	6.45	0.08	2.53	14.21	0.68	1.97	0.31	2.85	130	145	18	53	108	59	362	27	173	16	468	25	25	70	10	2
X	THI 59	55.22	0.78	14.51	6.06	0.07	2.04	12.38	0.63	1.50	0.25	6.41	131	129	16	47	91	74	286	25	181	15	511	26	24	54	9	2
	THI 60	51.97	0.73	13.62	5.50	0.07	2.18	13.49	0.47	1.50	0.32	9.99	114	116	16	45	85	64	319	24	180	14	688	27	25	50	9	2
5	THI 61	53.70	0.72	13.49	5.39	0.07	2.17	13.63	0.56	1.43	0.31	8.39	115	117	15	42	86	66	294	24	177	14	423	24	24	57	8	2
A	THI 62	50,63	0.49	10.98	3.76	0.11	1.85	20,81	0.42	1.20	0.14	9.50	73	98	19	49	70	74	195	27	125	10	380	21	19	40	7	3
	THI 63	45,87	0.54	9.81	3.04	0.03	1.33	21.32	0.27	1.52	0.24	15.91	62	75	10	25	44	46	216	19	163	10	410	13	26	35	7	2
	THI 64	49.22	0.46	10.72	3.49	0.12	1.82	20,83	0.41	1.09	0.18	11.54	69	85	12	47	71	66	219	26	121	.9	343	22	19	38	8	2
	THI 65	53.34	0.89	16.73	7.15	0.07	2.09	10.94	0.69	2.17	0.20	5.57	165	154	27	54	113	94	309	27	144	17	383	34	23	43	10	3
	THI 67	50,03	0.88	11.26	2.72	0.07	2.49	17.26	1.09	2.33	0.19	0.67	183	101	15	20	109	98	322	28	101	18	314	10	24	74	10	2
	THE 1	62.20	0.07	14.40	7.52	0.05	2.89	4.01	0.24	0.09	0.22	7.11	140	80	115	40	60	0/0	201	23	221	14	264	25	40	20	10	2
	THar 2	40.00	0.50	12.61	5.60	0.07	1.14	1100	0.47	1 71	0.15	14.05	1140	77	75	40	90	74	220	21	155	11	286	21	25	52	2	1
	THar 3	49,99	0.09	14.26	631	0.07	1.53	9.69	0.47	1.80	0.15	12.95	123	83	80	43	97	83	239	22	162	12	200	30	23	63	8	÷ .
5	THar 4	62.92	0.87	14.90	7.59	0.09	1.41	3.09	0.77	1.08	012	7.53	139	83	105	47	68	83	87	27	221	14	305	36	37	77	8	2
	THar 5	65.58	0.88	15.18	7.66	0.08	1.09	161	0.28	0.91	0.10	6.51	144	94	100	44	59	77	73	27	236	14	278	36	36	89	8	2
\cup	THar 6	57.96	0.66	13.23	5.39	0.07	1.32	9.78	0.53	1.56	0.34	9.03	106	72	85	38	75	60	146	19	232	9	239	27	34	54	5	ĩ
	THar 7	64.42	0.90	14.66	7.89	0.06	1.48	2.72	0.39	0.90	0.06	6.38	131	94	100	46	66	82	102	28	238	14	294	38	36	62	8	2

Elisabetta Gliozzo – Studying ancient ceramics - Science & Past (Zaragoza, February 1-3 2017)

Ternary diagrams after Vincenzini and Fiori (1976). M stands for majolica, C for cottoforte (i.e. semigres) and G for gres

Qualitative 'opinions' on ancient craftsmen skills! "High/low technological level" \rightarrow what does it mean?

complementary

Mineralogical and petrographic analyses

- 1. Optical microscopy (OM)
- 2. X-ray diffraction (XRD)

- Optical microscopy Textural features
 - Clayey/sandy matrix
 - Grain size
 - Roundness, sphericity
 - Orientation
 - Porosity

- Optical microscopy Textural features
 - Clayey/sandy matrix
 - Grain size
 - Roundness, sphericity
 - Orientation
 - Porosity

- Optical microscopy Textural features
 - Clayey/sandy matrix
 - Grain size
 - Roundness, sphericity
 - Orientation
 - Porosity

- Optical microscopy Qualitative and quantitative characterization of <u>mineralogical phases</u>, lithic fragments and microfauna
 - Phases %
 - Natural inclusions
 - vs. temper

 Optical microscopy - Qualitative and quantitative characterization of mineralogical phases, <u>lithic</u> <u>fragments</u> and microfauna

- Optical microscopy Qualitative and quantitative characterization of mineralogical phases, lithic fragments and <u>microfauna</u>
- a) Mollusc;
- b) Benthic (i.e. live on or within the seafloor sediment) foraminifer *Nonion boueanum*
- c) Plactonic (i.e. floaters in the water column at various depths) foraminifera
- d) Echinid
- e) Echinid with a foraminifer in the nucleus
- f) =
- g) Briozoa
- h) Benthic foraminifer substituted by iron oxides

Duminuco, Riccardi, Messiga, Setti (1996). Ceramurgia (5), 281-288.

The clay-size fraction assemblages is determined using oriented samples. The clay fraction (below 2 µm) is isolated in settling tubes by gravity sedimentation, following Stokes' law. Clay samples are placed on glass slides and allowed to dry in order to make oriented samples and XRD patterns are taken after air drying and glycol solvation.

The samples are X-rayed in the range $4-40^{\circ}2\theta$ with a step size of $0.02^{\circ}2\theta$ and a measuring time of 2 s/step. Additionally, the range $27.5-30.6^{\circ}2\theta$ is measured with a step size of $0.01^{\circ}2\theta$ and a measuring time of 4 s/step in order to better resolve the peaks of kaolinite and chlorite (Biscaye, 1965).

Phase analyses on the clay fraction

Geotechnical analyses and tests (ceramics and clays)

	Sample	Sand	Silt	Clay
	#	wt.%	wt.%	wt.%
1	1	19	39	43
	4	17	30	52
	10	19	41	40
	11	38	20	41
	15	19	22	59
	23	45	30	25
	26	26	29	45
2	2	45	19	37
	3	16	19	65
3	5	15	20	63
	6	11	13	74
	7	12	15	73
4	8	17	31	51
	9	55	36	9
	14	15	35	50
	17	10	44	46
	18	14	55	31
5	12	17	19	64
	13	16	18	66
	16	19	21	60
	19	37	9	54
	20	24	22	54
	21	10	21	68
	22	8	27	66
	24	19	19	62
	25	15	26	59
	27	12	23	66
	28	28	23	49
	29	7	25	68
	30	9	31	60

Particle size distribution. The classification used here is that of Shepard (1954) (shown on the left) with the sand, silt, and clay-size fractions based on the Wentworth (1922) scale.

Geotechnical analyses and tests (ceramics and clays)

LDS

mm 10.0 10.7 7.3

6.4 13.5

8.5 10.7 11.4 15.0 10.7 13.6 13.6 13.5 3.5 9.2 9.2 7.0 10.0 12,2 12.3 10.2 12.0

13.1 15.1

12,1 11,4

13.4 11.4

12.4 11.7

Case 1. Building materials - production site

Geotechnical analyses and tests (ceramics and clays)

ATTERBERG LIMITS

Linear shrinkage limit \rightarrow The boundary between the semi-solid and solid states.

The maximum water content at which the reduction in water content will not cause decrease in total volume of soil but the increase in moisture content will cause an increase in moisture content. http://www.aboutcivil.org/atterberg-limits.html

LL

wt.%

Case 1. Building materials - production site

Geotechnical analyses and tests (ceramics and clays)

ATTERBERG LIMITS

Liquid limit \rightarrow The boundary between the liquid and plastic states (i.e. the water content at which the behavior of a clayey soil changes from plastic to liquid)

The moisture content at which it takes 25 drops of the Casagrande cup to cause the groove to close over a distance of 13.5 millimetres (0.53 in) is defined as the liquid limit.

(http://expeditionworkshed.org/workshed/liquid-and-plastic-limit-tests/)

PL

Case 1. Building materials - production site

Geotechnical analyses and tests (ceramics and clays)

ATTERBERG LIMITS

Soil balls

Plastic limit \rightarrow The boundary between the plastic and semi-solid states.

The water content at which the soil begins to crumble when rolled into threads of specified size. The Plastic Limit, also known as the lower plastic limit, is the water content at which a soil changes from the plastic state to a semisolid state.

Geotechnical analyses and tests (ceramics and clays)

Geotechnical analyses and tests (ceramics and clays)

Ip	Α	
wt.%		
25	0.59	Inactive
29	0.55	Inactive
26	0.64	Inactive
26	0.64	Inactive
38	0.66	Inactive
20	0.80	Normal
29	0.65	Inactive
24	0.64	Inactive
40	0.61	Inactive
36	0.56	Inactive
50	0.67	Inactive
44	0.61	Inactive
36	0.70	Inactive
14	1.57	Active
28	0.54	Inactive
28	0.62	Inactive
21	0.69	Inactive
32	0.51	Inactive
39	0.60	Inactive
34	0.56	Inactive
34	0.63	Inactive
33	0.61	Inactive
42	0.62	Inactive
51	0.78	Normal
35	0.56	Inactive
34	0.57	Inactive
45	0.68	Inactive
32	0.65	Inactive
36	0.53	Inactive
35	0.58	Inactive

Plasticity Index (PI)

The range of water content over which a soil exhibits plastic properties.

Plasticity index = Liquid Limit – Plastic Limit

 $I_p = LL - PL$

Geotechnical analyses and tests (ceramics and clays)

Classification of moulding behaviour after Marsigli and Dondi (1997).

- **Research questions**
 - Local production or import?
 - Trade routes
 - Production technology ceramic body and coating
- Sampling criteria
 - ► Typology, stratigraphy, chronology → pottery
 - ▶ Geology → 'local' clayey and sandy materials

Analytical techniques

1.	Optical microscopy (OM)	B (C)
2.	Scanning electron microscopy (SEM-EDS)	BC
3.	Trasmission electron microscopy (TEM)	. C
4.	X-ray fluorescence (XRF) + portable XRF	BC
5.	Inductively coupled plasma mass spectroscopy (ICP-MS)	B
6.	Neutron activation (NA)	B
7.	X-ray diffraction (XRD)	BC
8.	Syncrothron radiation X-ray diffraction (SR-XRD)	С
9.	Neutron diffraction (ND)	B
10.	X-ray absorption spectroscopy (XAS)	С

Scanning electron microscopy

Texture – clay body

The observation is not influenced by colours!!

What does it tell you?

- supply materials, tempering

Scanning electron microscopy

 Acc V. Sppt Magn. Det WD _____ 500 pm

What does it tell you?

-production technology

Information already achieved by OM

Scanning electron microscopy

What does it tell you?

-sintering

Scanning electron microscopy

Zonation

Reaction rims

Scanning electron microscopy

Rose – raw ceramic (not fired)

Vegetal remains

Scanning electron microscopy

Scanning electron microscopy

Scanning electron microscopy

	opaque	shining	metallic	bluish
SiO ₂	49,52	50,07	47,54	47,16
Al_2O_3	28,09	28,40	28,85	29,06
TiO ₂	0,33	0,41	0,24	0,38
FeO	12,53	12,40	13,96	14,11
MgO	2,65	2,64	1,98	2,29
CaO	0,90	0,81	1,09	0,89
Na ₂ O	0,34	0,17	0,14	0,23
K ₂ O	5,6	5,24	6,19	5,88

Trasmission electron microscopy

BLUISH

<u>Nucleus</u>: intermediate composition between hercynite, magnetite, spinell S.S.

<u>Rim</u>: Hercynite with minor magnetite in solid solution

Trasmission electron microscopy

METALLIC

Magnetite with minor hercynite and spinel s.s. in solid solution

Trasmission electron microscopy

MISFIRED - Hematite

OPAQUE - Hercynite and magnetite

SR-XRD

SR-XRD

X-ray Absorption Spectroscopy (XAS)

$$Fe^{2+} \leftrightarrow Fe^{3+}$$

Oxidising vs. reducing

MISFIRED HEMATITE - OXIDISING

METALLIC MAGNETITE WITH MINOR HERCYNITE – PREV. OXIDISING

BLUISH HERCYNITE WITH MINOR MAGNETITE – PREV. REDUCING

Neutron diffraction → NON DESTRUCTIVE bulk mineralogical analysis

6/7 HOURS 4/5 DAYS RADIOACTIVE SCARCELY AVAILABLE

PORTABLE X-RAY FLUORESCENCE (XRF)

Non destructive Very rapid Unexpensive Limited penetration (few tens of µm) LOW ACCURACY

Perfect for a preliminary diagnosis, sampling and *unica* !!!

Major risk: from Museums without explanatory panels to Museums with lots of panels including false information