SCIENCE & PAST

MASTERING MATERIALS TO KNOW OUR HERITAGE

Zaragoza February 1-3 2017

Production technology and trade routes of ancient glass materials

Elisabetta Gliozzo

Glass making cycle

- **RAW MATERIALS SUPPLY AND PREPARATION**
- PRIMARY /SECUNDARY WORKSHOPS
- **TECHNOLOGY**
- **DISTRIBUTION AND USE**
- **POST DEPOSITIONAL PROCESSES**
- **CONSERVATION AND RESTORATION**

Glass research

ESSENTIAL

> Significant research objectives

- ▶ Glass technology: vitrifying, fluxing, stabilising, colouring/decolouring agents
 REFERENCE GROUPS →
- Glass provenance
- Representative sampling
 - > Typology, stratigraphy, chronology, conservation state...
- Appropriate methodology
 - **Destructive/ non destructive, bulk/superficial, chemical/<u>mineralogical</u>/....**
- Rigorous interpretation of the results
- Dissemination

Vitrifying agents network former

(3- or 4-fold coordination)

									2 He 4.00	
				5	6	7	8	9	10	ľ
				в	С	N	0	F	Ne	
				10.81	12.01	14.01	16.00	19.00	20.18	
				13	14	15	16	17	18	1
				Al	Si	Р	S	Cl	Ar	
				26.98	28.09	30.97	32.07	35.45	39.95	
7	28	29	30	- 31	32	33	34	35	36	1
Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
8.93	58.69	63.55	65.39	69.72	72.61	74.92	78.96	79.90	83.80	
5	46	47	48	49	50	51	52	53	54	1
Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe	
02.9	106.4	107.8	112.4	114.8	118.7	121 7	127.6	126.9	131.2	
7	78	79	80	81	82	83	84	85	86	1
Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
92.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)	
09	110	111	112	113	114	115	116			1
Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh			
266)	(281)	(272)	(285)	(284)	(289)	(288)	(292)			

Silicie Ossigene

> Random distribution of [SiO₄] tetrahedra chains

Al can substitute Si strengthening the network

Origin	Reference*	SiO ₂	Al_2O_3	CaO	$M_{\rm g} O$	Na ₂ O	K_2O	Fe_2O_3	IO_2	$C_{0}O$	MnO	Som
Quartz peb	bles								2252003		0-1000	
Amarna	XXIVA.1298	99.83	0.05	0,05	0.01	0.05		0.01	[0.005]	[0.005]	[0.005]	100
Sand												0
Amama	AM44	87.36	2.79	5.50	0.55	0.55	0.53	1.76	0.76		0.04	99.8
Amarna	AM43	73,56	3.29	18,11	0.98	0.83	0,61	2.02	0.52		0.04	99.9
Belus River	XXIVA.673	87,75	3.3	6.18	0,34	0.9	1.06	0.47	[0.05]		[0.02]	100
Belus River	XXIVA.674	87.5	3.15	6,68	0.35	0.86	1.02	0.44	[0.03]		[0.02]	100
Belus River	XXIVA.675	83,75	2.62	10.85	0.61	0.74	0.97	0.46	[0.03]		0.02]	100
Belus River	XXIVA.676	77.73	2.52	16,57	0,89	0,75	0.94	0.61	[0.05]		[0.03]	100
Karnak	Turner (1956, 281)	83,61	1.32	12.01	1.23			*	St 183		90 SR	98.2
Fayoum	Turner (1956, 281)	95.22	1,86	1.85	0.09			*				99.0
Pyramids	Turner (1956, 281)	82.35	1.45	8.4	tr	0.19		*				92.4
Aswan	Turner (1956, 281)	93,78	3,59	0,67	tr	tr		٠				98.0

Al_2O_3

The Al_2O_3 content reflects the purity level of the silica source, unless it was introduced together with other components (i.e. fluxes or decolourants, like in cobalt blue glass). As a consequence, the amounts of Al_2O_3 are crucial for the identification of raw materials used as vitrifying agents. A level of about 1 wt% is generally considered as *the typical impurity level introduced with quartz or a relatively pure silica source* (Henderson et al. 2004), therefore, it is generally used as a cutoff value between crushed quartz and sand sources.

Fluxing agents network modifier

(6- or 8-fold coordination)

SI-O = covalent \rightarrow strong Na-O=ionic \rightarrow weak

Their function is to decrease the softening temperature, breaking some links among silica \rightarrow silica melt at 1723°C !!!!

Elisabetta Gliozzo – Glass materials - Science & Past (Zaragoza, February 1-3 2017)

Zug Lake

(Wadi Natrun, Sahara Desert, Egypt

Fluxing agents network modifier

Origin	$Reference^*$	SiO_2	Al_2O_3	CaO	$M_{\rm S}O$	Na_iO	K_2O	Fe_2O_3	TiO_2	MnO	Sum	Notes
<i>Natron</i> Egyptian tomb Egyptian tomb Egyptian tomb	XXIVB.655 XXIVB.657 XXIVB.658	0.5 2.0 2.0	0.10 0.61 0.47	0.30 0.39 0.42	0.38 0.42 0.46	50.5 42.7 41.6	0.55 0.48 0.58	0.14 0.40 0.26	0.005 0.20 0.20	0.0005 0.005 0.0005	52.5 47.2 46.0	Plus CO ₂ and SO ₃ Plus CO ₂ and SO ₃ Plus CO ₂ and SO ₃

→ Natron contains several impurities which enter the glass batch
→ Natron was initially used to embalm the dead

Fluxing agents network modifier

PLANT ASH

(POTASH)

$\partial rigin$ $Reference^*$ SiO_2 $M_{\rm g} O$ TO_2 $C_{\theta}O$ MnO $Al_{2}O_{2}$ CaO Na_2O $K_{\tau}O$ $Fe_{2}O_{n}$ Sum Plant a sh Turkey XXIVC.650 Minor 5.9012.206.25 14.23.983.790.800.0247.1XXIVC.1301 5.56 7.5039.2 8.12 0.0561.5Iran 0.620.430.03XXIVC.1324 Minor 4.8913.808.00 25.53.52D.80 0.0561.5 Iraq. 4.96XXIVC.1380 9.546.0431.35.230.0553.4Syria 0.50.720.01

Elisabetta Gliozzo – Glass materials - Science & Past (Zaragoza, February 1-3 2017)

Elisabetta Gliozzo – Glass materials - Science & Past (Zaragoza, February 1-3 2017)

Stabilising agents Image: provide the stabilisers

(4-, 6- or 8-fold coord.)

Also modifier

A glass made of Si, Na and O only is unstable \rightarrow e.g. dishwasher detergent

Their function is to stabilise the network, bridging spare oxygens with a stronger link than sodium.

Stabilising agents Image: stabilisers

ARAGONITIC SHELLS

Elisabetta Gliozzo – Glass materials - Science & Past (Zaragoza, February 1-3 2017)

LIMESTONE

DOLOMITIC LIMESTONE

- 'De/Colouring' agents
 - Naturally included
 - Intentionally added

<u>Cutoff value</u> \rightarrow Fe₂O₃-MnO binary diagram demonstrates the reliability of **0.025 wt%** as the reference value . Considering the detection limits of several analytical techniques, this amount is rather low, however, it approximately corresponds to the

<u>FeO/MnO ratio in the Earth's crust</u>. Actually, FeO and MnO contents in the Earth crust amount to 5.04 and 0.1 ppm respectively, with a FeO/MnO=50.4 (Rudnick and Gao, 2003), therefore, their ratio is equal to 0.020. Using values provided for the weathered crust (FeO=7.77, MnO=0.14; see Kamber et al. 2005), the ratio further decreases to a value of 0.018.

• 'Colouring' agents

- Naturally included
- Intentionally added

 $Mn^{4+} + Fe^{2+} \rightarrow Mn^{2+} + Fe^{3+}$

Mn-bearing common minerals								
	Mineral formula	Mn content %						
Hausmannite	Mn ₃ O ₄	72.03						
Braunite	$Mn^{2+}Mn^{3+}{}_{6}SiO_{12}$	63.60						
Pyrolusite	MnO ₂	<u>63.19</u>						
Ramsdellite	MnO ₂	63.19						
Alabandite	MnS	63.14						
Manganite	MnO(OH)	62.47						
Pyrochroite	Mn(OH) ₂	61.76						
Todorokite	$(Na,Ca,K)_2(Mn^{4+},Mn^{3+})_6O_{12}\bullet 3-4.5(H_2O)$	56.54						
Tephroite	$Mn_2(SiO_4)$	54.41						
Bixbyite	$Mn_{1.5}Fe_{0.5}O_3$	52.05						
Birnessite	$(Na,Ca,K)_{x}(Mn^{4+},Mn^{3+})_{2}O_{4} \cdot 1.5(H_{2}O)$	50.94						
Romanechite	$(Ba,H_2O)_2(Mn^{4+},Mn^{3+})_5O_{10}$	48.45						
Rhodochroisite	Mn(CO ₃)	47.79						
Psilomelane (*)	$(Ba, H_2O)_2Mn_5O_{10}$	46.56						
Hollandite	$Ba(Mn^{4+},Mn^{2+})_8O_{16}$	42.51						
Rhodonite	(Mn,Fe,Mg,Ca)SiO ₃	38.29						

- Decolouring agents and opacifying agents
 - Naturally included
 - Intentionally added

	Sb ²⁺	Colourless
Sb -	Ca ₂ Sb ₂ O ₇ , CaSb ₂ O ₆	White op.
	$Pb_2Sb_2O_7$	Yellow op.

<u>Cutoff value</u> \rightarrow The cutoff value for Sb could be reasonably fixed at <u>20 ppm</u>, based on studies available on sands composition (Degryse 2015). The latter provide an average antimony content of 1.4 ppm and a maximum content of 19.2 ppm. However, most analytical techniques used for glass analyses are not able to reach such degree of accuracy, therefore, the cutoff value has been here arbitrarily increased to <u>100 ppm</u>.

- Decolouring agents and opacifying agents
 - Naturally included
 - Intentionally added

Sb
$$\begin{cases} Sb^{2+} & Colourless \\ Ca_2Sb_2O_7, CaSb_2O_6 & White op. \\ Pb_2Sb_2O_7 & Yellow op. \end{cases}$$

Ca-antimonate in light blu tesserae

Pb-antimonates in yellow tesserae

- Decolouring agents and opacifying agents
 - Naturally included
 - Intentionally added

Sb
$$Sb^{2+}$$

 $Ca_2Sb_2O_7, CaSb_2O_6$
 $Pb_2Sb_2O_7$ Colourless
White op.
Yellow op.

Pb-antimonates in yellow tesserae

Ca-antimonate in light blu tesserae

Ca-antimoniati bit Macan Det WD Exp to the total tota

- Decolouring agents and opacifying agents
 - Naturally included
 - Intentionally added

Sb-bearing common minerals							
	Mineral formula	Sb content %					
Paradocrasite	$Sb_2(Sb,As)_2$	91.92					
Senarmontite	Sb ₂ O ₃	88.39					
Kieftite	CoSb ₃	86.11					
Valentinite	Sb ₂ O ₃	83.53					
Nisbite	NiSb ₂	80.58					
Cervantite	Sb ³⁺ Sb ⁵⁺ O ₄	79.19					
Stibiconite	Sb ³⁺ Sb ⁵⁺ ₂ O ₆ (OH)	76.37					
Kermesite	Sb ₂ S ₂ O	75.24					
Coquandite	$Sb_6O_8(SO_4)\bullet(H_2O)$	75.11					
Stibnite	Sb ₂ S ₃	71.68					
Costibite	CoSbS	57.23					
Berthierite	FeSb ₂ S ₄	56.94					
Aurostibite	AuSb ₂	55.28					
Chalcostibite	CuSbS ₂	48.81					
Romeite	$5CaO_3 \cdot Sb_2O_5$	44.54					
Bindheimite	Pb ₂ Sb ₂ O ₆ (O,OH)	31.62					

Mn-decoloured vs. Sb-decoloured

Research questions: glass technology

	1				1					· ~				-
CHRONOLOGY	$\begin{array}{c} 1^{sl}.14^{th}A\\ 8^{th}.16^{th}A\\ 8^{th}.10^{th}A\\ 4^{th}.10^{th}A\\ 4^{th}.7^{th}A\\ 1^{sl}.6^{th}A\\ 1^{sl}.3^{th}A\\ 5^{th}BC-6^{th}A\\ 5^{th}BC-3^{th}A\\ 5^{th}.1^{st}E\\ 16^{th}.6^{th}E\\ 12^{th}.5^{th}E\\ 16^{th}.6^{th}E\\ 12^{th}.5^{th}E\\ 16^{th}.6^{th}E\\ 1$	MD- P9 MD- P8/9a MD- P7/8a MD- P7/8a MD- P6/7a D- P6/7a D- P5/6a SC- P5 MD- P5/6a SC- P5 SC- P5 SC- P4 SC- P3a/4a 2 C- P3	1 17 50 1 1 2 4	.354	1 8 8 4 5 th B 5 th E 1 1	$[^{st}-14^{th}]$ $[^{th}-10^{th}]$ $[^{th}-10^{th}]$ $[^{th}-10^{th}]$ $[^{th}-7^{th}]$ $[^{ts}-3^{th}]$	AD- P9 AD- P89a AD- P8 AD- P78 AD- P67a AD- P67a AD- P56b AD- P56b AD- P56b AD- P56b BC- P3 BC- P3	2 5 1 1 2 15 2	-48	1 st -1 8 th -1 8 th -1 4 th -1 1 st - 5 th BC- 5 th BC- 5 th BC- 5 th BC- 16 th 16 th	14 th AE 10 th AE 10 th AE 7 th AE 6 th AE 3 rd AD 3 rd AD 3 rd AD -1 st BC -5 th BC -8 th BC	D- P9 D- P89a D- P8 D- P7 8 D- P7 B- P6 D- P5/6b D- P5/6b D- P5/6b D- P5/6b D- P5/6b D- P5/6b D- P5/6b D- P5/6b D- P5/6b D- P3/4a C- P3	35 16 4 5 5 12 1 2	191
VITRIFYING AGENT	416 96% Al ₂ O ₃ >15		9 2% 0415	8 	Al ₂ O	97 92%		2 2% 10-15	6 6% <1.0	Al ₂ O ₃ >	471 96%	1	12 2% 1.0-1.5	10 2% <1,0
FLUXES	428 99%	2 Int. K	Int.Mg	<u>3</u> Plantash		88 84%	3 3%	1 1% IntMg	13 12% Pant ash	4 92	52 2%	12 <u>2%</u> Int.K	3 1% Int.Mg	26 5% Plant ash

Simplifying matters, the **Egyptian coast** was likely to produce **all Sb-decoloured glass** and **partly, Late Antique and Medieval Mn-decoloured glass**.

Conversely, the <u>Levantine coast</u> seems to have oriented its production toward **Mn**-decoloured glass, from the Hellenistic to the Medieval period.

Elisabetta Gliozzo – Glass materials - Science & Past (Zaragoza, February 1-3 2017)

Colouring agents

C0 ²⁺	Blue with a purplish hues
C0 ³⁺	Blue, purplish
Co ²⁺ /Co ³⁺	Blue
Co>0.05 with Cu 0.02-1.3%	Blu intense
+ Cu/Fe/Mn	Black
Cu metallic	Ruby red
Cu ⁺ (Cu ₂ O, cuprite)	Opaque red (Hematinum), orange
Cu ²⁺	Blue with greenish hues
Pb ²⁺	Yellow
Pb²⁺/Pb³⁺	Red

Colouring agents

+ Cu/Fe/Mn	Black
Cu metallic	Ruby red
Cu ⁺ (Cu ₂ O, cuprite)	Opaque red (<i>Hematinum</i>), orange
Cu ²⁺	Blue with greenish hues

Metallic Cu and Cu oxides in red tesserae

Cu oxides (cuprite) orange tesserae

Elisabetta Gliozzo – Glass materials - Science & Past (Zaragoza, February 1-3 2017)

Relicts and newly formed phases

Bulk chemical analyses

- 1. X-ray fluorescence (XRF)
- 2. Inductively coupled plasma mass spectroscopy (ICP-MS)
- 3. Neutron activation (NA)
- 4. Scanning electron microscopy (SEM-EDS)
- 5. Electron microprobe analysis (EMPA)
- 6. Proton-Induced X-ray Emission Spectroscopy (PIXE)
- 7. Laser ablation ICP-MS (LA-ICP-MS)
- 8. Isotopic analyses

SEM-EDS vs. EMPA

SEM is a close relative of the electron microprobe (EMP) but is designed <u>primarily for</u> <u>imaging rather than analysis</u>. SEM-EDS does not have the accuracy and detectability of EMPA but has found wider use due to the SEM's lower cost and its data collection speed.

EMPA is equipped with a range of spectrometers that enable quantitative chemical analysis (wavelength-dispersive spectrometry; WDS) at high sensitivity. Accuracy approaching $\pm 1\%$ (relative) is obtainable and <u>detection limits</u> down to tens of parts per million (by weight) can be attained.

Both SEM-EDS and EMPA are unable to detect the lightest elements (H, He and Li); as a result, for example, the "water" in hydrous minerals cannot be analyzed.

Both SEM and EMPA cannot distinguish between the different valence states (e.g. of Fe), so the ratio (e.g. ferric/ferrous) cannot be determined and must be evaluated by other techniques.

SEM-EDS vs. EMPA

Table 1. Major, minor, and trace element compositions of glasses (Brill, 1999) mass fraction ×10²

Corning	А	В	С	D
USNM #	117218.004	117218.001	117218.002	117218.003
SiO ₂	66.56 [*]	61.55 ^a	34.87*	55.24
Al ₂ O ₃	1.00	4.36	0.87	5.30
Fe ₂ O ₃	1.09	0.34	0.34	0.52
MgO	2.66	1.03	2.76	3.94
CaO	5.03	8.56	5.07	14.8
Na ₂ O	14.3	17.0	1.07	1.20
K ₂ O	2.87	1.00	2.84	11.3
MnO	1.00	0.25	0.82*	0.55
P2O5	0.13	0.82	0.14	3.93
TiO ₂	0.79	0.089	0.79	0.38
Sb ₂ O ₅	1.75	0.46	0.03	0.97
CuO	1.17	2.66	1.13	0.38
PbO	0.12	0.61	36.7	0.48
CoO	0.17	0.046	0.18	0.023
BaO	0.56	0.12	11.4	0.51
SnO ₂	0.19	0.04	0.19	0.10
SrO	0.10	0.019	0.29	0.057
ZnO	0.044	0.19	0.052	0.10
		Nominal compositions ^b		
B ₂ O ₃	0.20	0.02	0.20	0.10
Li ₂ O	0.01	0.001	0.01	0.005
Cl	0.10	0.2	0.10	0.4
SO ₃	0.10	0.5	0.10	0.3
Rb ₂ O	0.01	0.001	0.01	0.005
V2O5	0.006	0.03	0.006	0.015
Cr ₂ O ₃	0.001	0.005	0.001	0.0025
NiO	0.02	0.10	0.02	0.05
ZrO ₂	0.005	0.025	0.005	0.0125
Ag ₂ O	0.002	0.01	0.002	0.005
Bi ₂ O ₃	0.001	0.005	0.001	0.0025
Total	99.94	99.87	99.95	100.59

Vincenzi, E.P., Eggins, S., Logan, A., Wysoczanski, R. 2002. Microbeam Characterization of Corning Archeological Reference Glasses: New Additions to the Smithsonian Microbeam Standard Collection, Journal of Research (NIST JRES), 107, no. 6.

* From Brill (unpublished data).

^b Calculated from precursor mass fractions.

LA-ICP-MS

Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) is a direct sampling analytical technology that enables highly sensitive elemental analyses on solid samples

It removes (or 'ablate') material and transfer this to an 'inductively coupled plasma' (ICP) source, from which either ions for mass spectrometry or light for optical emission spectrometry can be produced.

LA-ICP-MS

- Sensitivity: parts per billion (ppbw)
- Depth Resolution:
 approximately 1 μm
- Typical Spot Size: 10 –
 100 μm
- Very fast
- Limitation (not for glass): Limited sample amount is consumed therefore it can be less representative of the bulk

PIXE

Characteristic X-rays are excited by bombardment with protons.

The X-ray background is much lower than in EMPA (a consequence of the higher mass of the proton compared with the electron), making small peaks easier to detect.

Detection limits are thus typically an order of magnitude lower (in the ppm range).

[http://assets.cambridge.org/052184/87 5X/excerpt/052184875X_excerpt.htm]

PIXE

The equipment is quite costly and not very widely available

PIXE

High-energy protons are <u>difficult</u> <u>to focus</u> in order to obtain high spatial resolution (**a beam diameter of 1 \mum is attainable, but only with low current**), and they <u>penetrate much further</u> in solid materials.

Protons of energy 1–4 MeV, which give efficient X-ray excitation, can penetrate the full 30- μ m thickness of a petrological thin section and it follows that the spatial resolution with respect to *depth* is relatively poor.

www.diplomatie.gouv.fr/en/

Emplacement du Wadi Natrun et des sites de l'opération

PRIMARY WORKSHOPS

Primary glassworkshop in Beni Salama, Wadi Natrun. © M.-D. Nenna

The Beni Salama site, located 14 km east of the Wadi Natrun village, includes a series of hills formed by the accumulation of successive generations of basin furnaces, used for glass fusion.

At the surface, bricks have been identified covered with light-coloured and translucent glass when they come from the furnace vaults and an opaque vitreous material when they come from the basin walls and bottom - mixed in with layers of ash, as well as infinitesimal glass fragments.

Methodical geophysical prospecting carried out on 2003 ha shown that they date from the middle of the Middle Empire until the 7th century after JC.

PRIMARY WORKSHOPS

A second site south of the lakes, **Bir Hooker**, was identified in 2002. It is located just south of the modern-day village of Wadi Natrun on the road leading to the monasteries, bordering a fossil dune currently mined as a quarry.

The geophysical prospecting (2004) has indicated the presence of magnetic anomalies similar to those in Beni Salama and regular underlying occupation (village?). The ceramological prospecting has made it possible to date the occupation between the 3rd century BC and the 2nd century AD.

PRIMARY WORKSHOPS

The third site, again south of the lakes, is located 10 km northwest of the village Wadi Natrun, in the locality **Zakik**.

The site contains some of the same type of waste as in Beni Salama and Bir Hooker, but the geophysical prospecting carried out in 2002 yielded but little information, as a village involved in natron mining had settled on the rubbish mounds at the start of the 19th century.)

SECUNDARY WORKSHOPS

Elisabetta Gliozzo – Glass materials - Science & Past (Zaragoza, February 1-3 2017)

• Group 2 samples (4th-5th century AD) found in the Western Mediterranean area and Egypt

• Group 3 most of the Roman and early medieval glasses (made until the ninth century) found in the West and probably made with Belus sands

• Group 4 including glasses (2nd-3rd century AD) found in the West and characterized by the use of antimony as decolourant (Foy *et al.* 2003, Picon and Vichy 2003)

Elisabetta Gliozzo – Glass materials - Science & Past (Zaragoza, February 1-3 2017)

ISOTOPES : A example regarding ⁸⁷Sr/⁸⁶Sr ratios

The application of strontium isotopes to the interpretation of ancient glass depends on the assumption that the <u>bulk of the strontium of many glasses</u> <u>is incorporated with lime-bearing</u> <u>constituents in the glass (e.g. shell,</u> limestone, plant ash).

Figure 1 Variation in the strontium isotope composition of seawater versus time, based on Burke et al. (1982) (drawing by A. Simpson).

Freestone et al. 2003

CaCO₃ derives from Holocene beach **shell** \rightarrow the ⁸⁷Sr/⁸⁶Sr ratio should reflect that of <u>modern seawater</u>.

CaCO₃ derives from **limestone** \rightarrow the ⁸⁷Sr/⁸⁶Sr ratio should reflect that of seawater at the time the limestone was deposited

CaCO₃ derives from **plant ash** \rightarrow the ⁸⁷Sr/⁸⁶Sr ratio should reflect the <u>bioavailable strontium from the soils</u> on which the plant grew.

ISOTOPES : ⁸⁷Sr/⁸⁶Sr ratios

Strontium isotopes in the investigation of early glass production

LIMITS OF THE METHOD

Tendency of the ⁸⁷Sr/⁸⁶Sr ratio in the limestone to change as the limestone undergoes diagenesis (cation exchange with groundwater and clay minerals).

Outcrops of Oligocene limestone, occurring north of the region of Ashmunein, around the latitude of modern Cairo

RECYCLING INDICATORS

RECYCLING

- Mn-decoloured
- Sb-decoloured

Mn/Sb-decoloured

Research questions: glass technology

