Research and applications of nanomaterials in Cultural Heritage

SILVESTRO ANTONIO RUFFOLO UNIVERSITÀ DELLA CALABRIA

University of Calabria Campus

Research group on Science applied to Cultural Heritage

- ► Gino M. Crisci (Full professor)
- ► Donatella Barca (Associate professor)
- Mauro F. La Russa (Researcher)
- Domenico Miriello (Researcher)
- Silvestro A. Ruffolo (Research fellow)
- ► Michela Ricca (Research fellow)
- Natalia Rovella (Contractor)
- ▶ Raffaella De Luca (Contractor)
- ► Valeria Comite (Contractor)

Overview of the lecture

- What is nanotechnology
- Why we should apply nanotechnology to restoration of Cultural Heritage
- State of art of research
- Consolidation with nanoparticles
- Protection with nanoparticles

What is Nanotechnology

The study of the controlling of matter on an atomic and molecular scale. Generally nanotechnology deals with structures sized between 1 to 100 nanometres in at least one dimension, and involves developing or modifying materials or devices within that size.

Applications of nanotechnology in Cultural Heritage

Why we should use nanoparticles in restoration?

Example: for consolidation of stone materials, there is the need of small particles in order to achieve a deeper penetration

Limewater and milk of lime

If I add more lime I will obtain a milky suspension called milk of lime

The main problem is related the dimension of the particles (scarce penetration)

<section-header><text>

Modica stone

 Petrographic observations (Belfiore et al. 2010) revealed a grain-supported texture with about 30% of micritic matrix.
 Allochemical components, with percentages between 40 and 45%, consist of several bioclasts.

The porosity (about 27%) is mainly intergranular. According to Dunham (1962), the Modica stone can be classified as a packstone, according Folk (1962) as a biomicrite.

Use of biocides in restoration of stone surfaces

- In the early stages of cleaning of an area affected by biological degradation, a fundamental operation is represented by the removal of biological patinas
- The removal of biological patinas requires the use of biocides (organic compounds in aqueous or organic solvent)
- The removal of biological patinas does not ensure an inhibiting effect over time

	By poss	dopin ible to effi	M-Doped TiO ₂ g the TiO ₂ it is enhance the ciency	any doping been used urpose
	Kind of dopant	Doped element	Preparation method	Potential application
	Metal dupants	Ag	Silver nitrate was mixed with reduction agent (sodium citrate tribasic dihydrate) and the reaction temperature was mixed to 80°C with continuous stirring. Then TP and HNO ₂ were added and the reaction was maintained at 50°C for 24 h. The prepared sol was dried at 105°C for 24 h and calcimed at 300°C.	Degradation of nitrophenol in aqueous phase
		Fe	The reactive magnetron sputtering method: 99.99% titanium target and 99.9% iron pieces were placed in the reaction chamber and mixture of argon and oxygen was introduced into the chamber during discharging.	Wastewater decoloring
		v	Sol-gel method: Solution 1 (vanadyl acetylacetonate dissolved in n-butanol) was mixed with solution 2 (acetic acid in titanium butoxide) and hydrolyzed (24 h) by the water generated via the estrification of acetic and butanol. The suspension as dried at 150°C, pulverized and calcined at 400°C for 0, 5 h.	Wastewater decoloring
		Au	Titanium (IV) butoxide dissolved in absolute ethanol was added to solution containing tetrachloroauric acid (HAuCl ₁ 4H ₂ O), acetic acid and ethanol. The resulting suspension was aged (2 days), dried under vacuum, grinding and calcinated at 650°C.	Wastewater decoloring
		Pt	Photoreduction process: TiO ₂ was suspended in a mixture of hexachloroplatinic acid in methanol. The suspension was irradiated with a 125 W mercury lamp (60 min.). Pt-TiO ₂ was separated by filtration, washed with distilled water and dried at 100°C for 24 h.	Wastewater decoloring
Zal	eska, 20	08		

ID	material	Precursor	Acid (1 ml)	Total volume (ml)	Reaction rate	
1	TiO ₂	TBT	HCI 0,01M	25	Fast	
2	TiO ₂	TPT	HCI 0,01M	25	Fast	
3	5% Ag-TiO ₂	TBT	HCI 0,01M	25	Fast	
4	1% Ag-TiO ₂	TBT	HCI 0,01M	25	Fast	
5	5% Sr-TiO ₂	TBT	HCI 0,01M	25	Fast	
6	1% Sr-TiO ₂	TBT	HCI 0,01M	25	Fast	
7	TiO ₂	TPT	HCI 1M	25	Slow	
8	TiO ₂	TPT	HCI 1M	25	Slow	
9	TiO ₂	TPT	Acetic Acid 1	M 25	Fast	
10	TiO ₂	TPT	Acetic Acid 1	M 25	Fast	
11	TiO ₂	TPT	Acetic Acid Glacial	3	Very Slow	
12	1% Ag-TiO ₂	TPT	Acetic Acid Glacial	3	Very Slow	

Choosing the binder:

- ▶ Inorganic
- Minimal interference with the efficacy of titania
 - 3 binders have been tested
- Ammonium phosphate
- Ammonium oxalate
- NanoSilica

Experiment work flow

Samples have been taken by using a non-destructive sampling method of adhesive tape strips (Fungitape Did, Milan, Italy) as described by Urzì and De Leo, 2001)

The surfaces was first treated with a solution of Biotin R (CTS, Italy). The application has been carried out by brush. The treatment has been repeated three times (every 15 days), and then the surfaces have been rinsed with deionised water.

Experiment work flow 2

Samples have been collected to check the residual biocolonization

Dispersions of nanosilica and titania have been applied on stone surfaces by brush at amount of about 400 ml/m²

Laboratory analyses

Bacterial, Fungi and Phototrophs Identification and quantification

- Microscopic observations
- SEM analysis
- Cultural analyses
- ► ITS-PCR for bacteria
- ▶ 16SrDNA partial sequencing for Bacteria
- ▶ DNA extraction and PCR amplification for fungi

Results -before cleaning-

 Table 2. Amount of chemoorganotrophic microorganisms determined as cfu/g or as different degree

 of abundance for phototrophic ones.

Sample	Bacteria	Fungi	Phototrophs		
	(cfu/g)	(cfu/g)	(Presence/absence)		
ERB1	$3.2 \cdot 10^5$	$2.0 \cdot 10^4$	+++++		
ERB2	$6.5 \cdot 10^4$	$4.4 \cdot 10^{6}$	+++++		
ERB3	$7.2, \cdot 10^5$	occasional	++		
ERB4	$2.9 \cdot 10^{6}$	$3.0 \cdot 10^{6}$	-		
ERB5	$8.0 \cdot 10^{7}$	occasional	++++		
ERB6	$1.1 \cdot 10^{8}$	-	+		
ERB7	$4.4 \cdot 10^{7}$	$1.0 \cdot 10^4$	-		
ERB8	$2.1 \cdot 10^{7}$	occasional	++++		
++++++ (very abundant growth);					
++++ (abundant growth), ++ (discrete growth), + (scarce growth).					

Results - after cleaning -

Summary of cultural analysis carried out after 1 months of biocide treatments

Sample	Bacteria cfu/cm ²	Fungi cfu/cm ²	Phototrophs Presence/absence
ERBD1	145	0	0
ERBD2	75	0	0
ERBD3	65	6	+
ERBD4	15	0	0
ERBD5	50	0	0

Results - after titania coating application -

Bacteria, fungi and phototrophs growing in BRII, DRBC e BG11 respectively after streaking on the surface 1 cm² of adhesive tape. Samples are divided on the basis of the treatment as shown in Plate Ic.

Samples	Treatment*	Bacteria	Fungi	Algae
ERBN1		-	+	++
ERBN2		-	+	-
ERBN3	D3%+Ag-1102	++	+	+/-
ERBN8		+	+	-
ERBN4	D	++	+	+++
ERBN9	В	+	+	-/+
ERBN5	B10%+TiO2	++	+	-/+
ERBN6	B5%+TiO2	+	+	-
ERBN7	TiO ₂	+/-	+	+
= Binder; - = no growth;	+/-= scarce growth;	+=occasional g	rowth; ++=	discrete grow
indant growth.	0			0

Titanium dioxide: which future?

In May 2016 the -Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail – has submitted a CLH proposal to ECHA to classify titanium dioxide as 1B with hazard statement H350i (May cause cancer by inhalation)

ANNEX 2 - COMMENTS AND RESPONSE TO COMMENTS ON CLH PROPOSAL ON TITANIUM DIOXIDE							
Date	Country	Organisation	Type of Organisation	Comment number			
01.07.2016	Denmark	National Research Centre for the Working Environment	Behalf Of An Organisation	429			
Comment received							
3) It is very useful that the conclusions explicitly stated that both bulk and nanoTiO2 are classified as Carc 1B 4) The literature search should cover the literature until april 2015. Here are a few studies that were published but are not included in the review that the authors may consider to include: Transcriptional profiling identifies physicochemical properties of nanomaterials that are determinants of the in vivo pulmonary response: 'Halappanavar S, Saber AT, Decan N, Jensen KA, Wu D, Jacobsen NR, Guo C, Rogowski J, Koponen IK, Levin M, Madsen AM, Atluri R, Snitka V, Birkedal RK, Rickerby D, Williams A, Wallin H, Yauk CL, Vogel U. Environ Mol Mutagen. 2015 Mar;56(2):245-64. doi: 10.1002/em.21936. Epub 2014 Dec 11. PMID: 25504612' and 'Pulmonary instillation of low doses of titanium dioxide nanoparticles in mice leads to particle retention and gene expression changes in the absence of inflammation. Husain M, Saber AT, Guo C, Jacobsen NR, Jensen KA, Yauk CL, Williams A, Vogel U, Wallin							
occupational safety and health (OSH) and effective and appropriate risk management							

